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ABSTRACT

Low birth weight (LBW) remains a critical public-health indicator, linked strongly with
higher neonatal mortality, developmental delays, and lifelong chronic diseases. Using the
2021 U.S. Natality dataset (> 3 million births), this thesis develops a Bayesian, tree-based,
nonparametric framework that models the full birth-weight distribution and quantifies LBW
risk.

The raw dataset is condensed into 128 mutually exclusive classes defined by seven di-
chotomous maternal-infant predictors and 10 (or 11) birth-weight categories, comprised of
10% LBW quantile categories and one additional aggregated normal birth-weight (NBW)
category. The full and LBW-only models are grown to contrast and investigate how vari-
able selection is altered based on the restriction the dataset. The models are Classification
and Regression Trees (CART) using the marginal Dirichlet-Multinomial likelihood as the
splitting criterion. This criterion is equipped to handle sparse observations, with the Dirich-
let hyperparameters informed by previous quantiles from the 2020 dataset to avoid "double
dipping."

Employing a two-tier parametric bootstrap resampling technique, a 10,000 tree ensem-
ble is grown yielding highly stable prediction estimates. Maternal race, smoking status, and
marital status consistently drive the initial LBW risk stratification, identifying black, smok-
ing, unmarried mothers among the highest-risk subgroups. When the analysis is restricted
to LBW births only, infant gender and maternal age supersede smoking and marital status
as key discriminators, revealing finer biological gradients of risk. Stable and informative
mean ensemble estimates are obtained with narrow 95% percentile intervals.

The resulting modeling framework combines the interpretability of decision trees with a
custom quasi-Bayesian splitting criterion, yielding delivering actionable, clinically relevant
insights for targeting maternal-health interventions among the most vulnerable subpopula-

tions.
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Chapter 1

INTRODUCTION

Background & Problem

Low birth weight (LBW), defined as a birth weight less than 2.5 kilograms (Cutland,
C. L., Lackritz, E. M., Mallett-Moore, T., Bardaji, A., Chandrasekaran, R., Lahariya, C.,
Nisar, M. L., Tapia, M. D., Pathirana, J., Kochhar, S., Mufioz, F. M., Brighton Collabora-
tion Low Birth Weight Working Group, 2017; Kramer, 1987), is a significant public health
indicator. Infants born with LBW face substantially higher risk for neonatal mortality,
developmental delays, and chronic health problems such as respiratory and neurological
impairments (Finch, 2003). These adverse outcomes arise from a complex interplay of
genetic, biological, environmental, and socioeconomic factors. Understanding and identi-
fying determinants of LBW is therefore critical for developing informing targeted preven-
tative measures and improving neonatal outcomes.

Decades of research confirm that LBW is a multifactorial issue. An early landmark
meta-analysis by Kramer (1987) reviewed 895 studies from 1974-1984 and identified 43
causal determinants. Kramer concluded that maternal anthropometry (height and pre-
pregnancy weight), inadequate gestational weight gain, cigarette smoking, malaria infec-
tion, and a history of adverse pregnancy outcomes exert independent effects on intrauterine
growth restriction IUGR), while few factors influence gestational duration (Kramer, 1987).
The highly-interrelated nature of these risk factors led to confounding, yielding an imped-
iment for modeling birth-weight outcomes by their interactive, not additive, effects. For
example, inadequate pregnancy weight gain might depend on whether she smokes or has

health conditions. Classical regression models such as logistic regression, typically assume



additive effects and thus miss such interactions. As a result, traditional models often strug-
gle to disentangle which combinations of maternal-infant characteristics fruly signify an
at-risk pregnancy.

Subsequent work in epidemiology repeatedly show that these risk factors are not found
in isolation. In 2006, Kitsantas et al. (2006) use Classification and Regression Trees
(CART) developed by Breiman et al. (1984) to identify high-risk profiles of LBW on a
large dataset of Florida birth records, uncovering important context-specific combinations
that influence LBW risk. For instance, mothers who smoked and had inadequate weight-
gain during pregnancy had sharply elevated LBW risk. This study highlights the strengths
of interpretability using CART, but still lacks predictive power over logistic regression by
relying entirely on empirical observations. Moreover, reducing the problem to a binary
LBW indicator variable discards vital information about how far a newborn falls below the
LBW threshold. Regardless of differences, a baby just above 2.5 kg is treated the same
as a much heavier baby, and all LBW cases are treated alike. This binary cutoff masks
important differences in the birth-weight distribution.

Recent research has moved beyond classification toward estimating the full birth-weight
distribution conditional on covariates. Bayesian nonparametric mixture models allow the
birth-weight density to vary flexibly across subpopulations defined by maternal factors,
without strong parametric assumptions (Dunson ez al., 2008). Other approaches use copula-
based or density regression techniques to jointly model birth weight with related outcomes
such as gestational age (Rathjens et al., 2024). These methods can capture detailed dis-
tributional effects of predictors, such as how covariates influence the entire left tail of the
birth-weight distribution. However, a drawback in these advanced models is their com-
plexity and lack of interpretability for users. In contrast, practitioners particularly in public
health often prefer models that yield clear, simple decision rules for identifying high-risk

subgroups.



Several demographic and socioeconomic factors are well-known to influence LBW risk.
Younger and older mothers are associated with higher incidence of LBW (Goisis et al.,
2017). Lower educational attainment is associated with limited health care access (Finch,
2003; Jain, 2024), and environmental exposures, including tobacco use, substance abuse,
and air pollution, further elevate risk by interfering with fetal growth and development
(Stanford Medicine, 2025; Lu et al., 2020). Inadequate prenatal care is another important
factor of LBW outcomes (Institute of Medicine, 1985). Crucially, LBW incidence also
varies sharply by racial and economic contexts. In the United States, the LBW incidence
rate for Black infants is double that of white newborns, comparing 14.7% to 7.1% (March of
Dimes, 2024). These patterns underscore the multifactorial nature of effects that influence
LBW outcomes and the need to account for diverse influences in any predictive model.

Taken together, these considerations highlight a central challenge in birth-weight mod-
eling: existing methods trade flexibility for interpretability. Approaches using decision
trees alone provide transparent subgroup rules while ignoring the full birth-weight distri-
butions, simultaneously advanced Bayesian density models capture distributional details
but lack intuitive clarity. This work aims to bridge the gap by developing a quasi-Bayesian
tree-based framework that stratifies the population into interpretable risk subpopulations

while modeling full birth-weight distributions for predicting LBW outcomes.



Chapter 2

LITERATURE REVIEW & METHODOLOGY

Previous Work on Birth-Weight Modeling

As previously mentioned, Kramer (1987)’s meta-analysis identified 43 LBW determi-
nants then categorized them into genetic, nutritional, psychosocial, etc. and assessed their
effects on birth weight and prematurity. Maternal profiles were separated based on in-
come status, for high-income mothers, smoking status, poor maternal nutrition or low pre-
pregnancy weight were the strongest LBW determinants whereas in low-income settings,
maternal race origin, undernutrition, short stature, and malaria exposure were found to be
the most important predictors (Kramer, 1987). While for preterm births, smoking status
and low pre-pregnancy weight are strong indicators (Kramer, 1987). Kramer (1987) con-
cluded by stating that many potential contributors remain under studied, naming maternal
work, prenatal care, and previous infections as some examples. This comprehensive semi-
nal work highlights the complex and multifactorial nature of LBW, leaving open questions
about interactions of factors and distributional outcomes, motivating a more flexible mod-
eling procedure.

The application of CART by Kitsantas et al. (2006) to 181,690 singleton births from
Florida, led the identification of high-risk LBW mothers. Known risk factors of smok-
ing status, gestation weight-gain, parity, etc. were used to grow separate decision trees
by geographic region and compared against logistic regression (Kitsantas et al., 2006).
The CART model revealed high-risk profiles for White and Hispanic mothers with low
pregnancy weight gain, parity, and marital status defined high-risk stratification among

non-smokers (Kitsantas et al., 2006). For instance, smoking mothers that gain less than



20 1bs are at significantly higher risk than mothers of larger weight-gain pregnancies, and
Black mothers form a high-risk subpopulation in some regions regardless of other factors
(Kitsantas et al., 2006). However, predictive accuracy was marginally better than logistic
regression (Kitsantas et al., 2006), the recursive partitioning procedure conducted by CART
uncovered some of the complex factor interaction in the LBW data. This study shows how
the order of factors could be useful in disentangling strong interaction effects, suggesting
room for improved or alternative methods.

Dunson et al. (2008) (2008) used Bayesian semiparametric methods to link maternal
pregnancy weight gain to birth-weight distributions. Using a Dirichlet-process mixture,
they flexibly defined clusters of women by their weight-gain trajectories and jointly mod-
eled birth-weight densities across clusters (Dunson et al., 2008). This approach allowed
the entire birth-weight distribution to vary with weight-gain patterns, including distribution
tails, while also capturing heterogeneity of how pregnancy factors influence birth-weight
(Dunson et al., 2008). Dunson et. al. demonstrated that modeling the full distribution in
perinatal data is insightful — beyond mean estimates. However, advanced Bayesian mod-
els, latent clustering, and complex MCMC procedures lack interpretability and are compu-
tationally intensive, highlighting the need for model simplicity while retaining flexibility.

More recently, Rathjens et al. (2024) in 2024 proposed a Bayesian distribution regres-
sion approach using copulas to jointly model birth weight and gestational age. Marginal
distributions are assumed to follow a Gaussian for birth-weight outcomes, Dagum distri-
bution for skewed gestational age, and the copula linked the two cumulative distribution
functions (CDF) as functions of covariates (Rathjens et al., 2024). The results of this study
show non-linear effects of gestational age on weight and tail-dependent associations were
captured by a Clayton copula (Rathjens et al., 2024). The focus of bivariate outcomes here
show how distribution modeling can extend traditional regression approaches. Beyond

complex copula models, Bayesian methods enrich perinatal risk modeling.



In 2024, Jain (2024) proposed a scalable Bayesian density estimation method for na-
tionally collected birth records. Inspired by kernel density methods, a Gaussian mixture
is employed to model conditional distributions of birth weights given various predictors.
Through advanced MCMC and targeted subsampling techniques, the model was able to
capture complex patterns and estimate birth-weight densities at scale. Jain’s work esti-
mates the full distribution by density regression but underscores the computational and

interpretational challenges.

Current Approach & Contributions

In this thesis, we adopt CART and Bayesian nonparametric methods to approximate
birth-weight distributions. CART is a nonparametric algorithm proposed by Breiman et al.
(1984) and implemented in R by Therneau et al. (Therneau and Atkinson, 2023), called
Recursive Partitioning and Regression Trees, or rpart. The algorithm works in two stages:
tree construction and tree pruning.

First, the tree is constructed. Given the data, rpart recursively partitions it into bi-
nary splits on the given predictor variables, creating nodes at each split. Though the splits
need not be binary, this provides a clear and interpretable tree. CART employs a greedy
approach to building decision trees (Centre for Speech Technology Research, nd), where
its goal is to maximize homogeneity or equivalently minimize heterogeneity in the data.
At each node, CART evaluates all possible splits on candidate predictors and chooses the
one that best "explains" the data by minimizing the node impurity, resulting in two child
nodes with more homogeneous subgroups (Therneau and Atkinson, 2023). This process is
applied recursively to each child node then growing a larger tree until the tree’s max depth
is reached or no further improvement is found (Therneau and Atkinson, 2023).

Once fully grown, the tree typically overfits to the data, yielding large errors for small

fluctuations. To address this, cross-validation is used to estimate prediction error for a



sequence of pruned trees (Therneau and Atkinson, 2023). The tree is then "trimmed" back
to the best cross-validation performance (Therneau and Atkinson, 2023), yielding the final
tree that balances complexity and accuracy. For each terminal node (or "leaf") in the final
tree, a sequence of if-then conditions categorize birth-weight outcomes based on maternal
covariates.

Interpretability is preserved by using CART to automatically uncover high- and low-
risk groups for subpopulations of specific maternal and infant characteristics, much akin
to Kitsantas et al. (2006). Additionally, in line with Dunson et al. (2008) and Jain (2024),
this tree-based method imposes no strict distributional assumptions on the birth-weight
responses allowing for nonlinear interactions and heterogeneous effects to be captured nat-
urally by CART. Our preprocessing procedure results in count data of various birth-weight
categories, motivating the use of the marginal Dirichlet-Multinomial (DM) likelihood as
the Bayesian "evidence" and splitting criterion. The DM likelihood is chosen by producing
posterior predictive distributions and interval estimation at each leaf whereas the Gini in-
dex measures only impurity. The impurity of a terminal node, is entirely dependent on the
sample size by relying on empirical proportions (stats.stackexchange.com, 2025b). Addi-
tionally, the Gini index is known to suffer with data sparsity (Kamperis, 2021). Compared
to normal birth-weight (NBW) observations, we expect a large discrepancy between the
total number of observed LBW and NBW counts.

Birth-weight count observations can be safely assumed to follow a multinomial distribu-
tion, and the Dirichlet prior smooths categories not observed. For use in CART, a split with
high-DM likelihood translates as added improvement from parent to child nodes, reduc-
ing heterogeneity. The DM likelihood will be derived formally in Section 2 as a favorable

splitting criterion for our application.



Overview of the Birth-Weight Dataset

The primary dataset for this analysis is the 2021 Vitality Statistics Natality Birth Data
(National Bureau of Economic Research, 2024). Collected by the National Center for
Health Statistics (NCHS), this dataset contains a detailed record of birth outcomes and
various maternal characteristics as part of the Vital Statistics Cooperative Program (Jain,
2024; National Bureau of Economic Research, 2024). Standing as one of the most compre-
hensive datasets with over 3 million birth-weight records for maternal and infant health in
the United States, collected annually across all states and District of Columbia since 1972
(National Bureau of Economic Research, 2024).

For this analysis, variables in the 2021 data are broadly categorized into three domains:
demographic, health, and geographic. Demographic features include date of birth, parental
age and education, marital status, birth order, sex, and geographic location. Health features
cover birth weight, gestational age, prenatal care adequacy, delivery attendants, and Apgar
scores, while geographic indicators include state, county, and metropolitan status (National
Bureau of Economic Research, 2024). Note that Apgar scores are examinations based
on newborn vitals five minutes following delivery, observing how newborns handle being

outside the mother’s womb (apg, nd).

Data Preprocessing & Feature Engineering

The preprocessing procedure transforms the high-dimensional 2021 dataset into a work-
able and condensed dataset for computational efficiency, while preserving key information
about predictors. Preprocessing involved (1) encoding all categorical and continuous vari-
ables into unique dichotomous predictors, (2) dimension reduction from 3 million rows to
128 unique predictor combinations, and (3) creating a consolidated counts dataset, primar-

ily expanding the LBW region by creating birth-weight categories based on quantile cut



points. From the dataset, seven key predictor variables and birth-weight outcomes (in kg)

are retained for modeling.

Binary Feature Encoding

To enhance interpretability and computational efficiency, only seven predictors are se-
lected based on clinical relevance, strong generalizability, and prior research support. The
encoding procedure was inherited from Jain (2024), and these predictors serve as an ex-
ample of a small, yet representative set of predictors. Note that the encoding of mracel5
is suggested by Jain (2024) and March of Dimes (2024) as the primary dichotomy, though
this choice is entirely arbitrary. According to 2024 U.S. Census Bureau (2024), the na-
tional population is roughly 75.3% White and 13.7% Black, which provides demographic
context for this binary split. All information of each feature representation and meaning is

conveyed in the table below.

Table 2.1: Binary predictor definitions used in this study

Label Natality field Value=1 Value =0

Boy sex Infant is male (“M”) Infant is female (“F”)
Married dmar Mother is married Mother not married
Black mracelb Black / African American Any other race
Over33 mager Maternal age > 33 yr Maternal age < 33 yr
HighSchool medu High-school education completed Otherwise
FullPrenatal prenatal Adequate prenatal care Inadequate / none
Smoker cig_0 Any prenatal smoking No smoking




Dimension Reduction

After the first step in preprocessing, the data is encoded as dichotomous indicator vari-
ables and one response column of total recorded birth-weight outcomes for the 3 million
records. There are 27 = 128 possible combinations for the predictors, each representing
a unique class of maternal and infant characteristics. Aggregating observations by class
greatly reduces the computational load while preserving interpretability and necessary in-
formation of features, enabling discernment of risk factors with minimal computational

burden.
Converting Birth-Weight into Count Variables

The final step, transforms the dataset from 3.6 million by 237 to 128 by 11. We define a
sequence of decline-quantile cut points based on 10% quantile increments, to segment the
LBW region (from 0-to-2.5 kg) creating 10 total LBW categories. By using the previous
year’s identical dataset from 2020 in segmenting these categories, we eliminate problems
with "double-dipping" and bias in later estimates. This dimension reduction drastically
consolidates the dataset while providing a straightforward way to retrieve the number of
observations within a given class and birth-weight category. The specific cut-point values
and their prior assignment are shown in Table 2.2.

Table 2.2 the two types include: LBW and NBW, and the other restricted only to LBW,
where NBW is defined as any newborn with greater than 2.5 kg at birth (Wikipedia contrib-
utors, 2025a). Once the tree is fit, they are called the "full" and "LBW-only" models respec-
tively. The NBW observations are aggregated into one column called counts_above_2.5kg,
and will serve as the 11th birth-weight category in the consolidated counts dataset. When
given to CART, it is of primary concern how the inclusion of this column changes the tree

construction, variable selection, and stability of estimates. Additionally, the prior construc-

10



Table 2.2: Birth-weight quantile cut points and Dirichlet priors

LBW + Normal LBW only

Quantile Range (g) Prior (%) Range(g) Prior (%)

Ql 227-1170 0.84 227-1170 10
Q2 1170-1644 0.84 1170-1644 10
Q3 1644-1899 0.83 1644-1899 10
Q4 1899-2069 0.83 1899-2069 10
Q5 2069-2183 0.87 2069-2183 10
Q6 2183-2270 0.83 2183-2270 10
Q7 2270-2350 0.86 2270-2350 10
Q8 2350-2410 0.93 2350-2410 10
Q9 2410-2460 0.71 2410-2460 10
Q10 2460-2500 0.80 2460-2500 10
Normal >2500 91.67

tion is heavily skewed in the full model, where the NBW column has probability of 91.67%,
while the LBW-only is a uniform 10% prior probability across all 10 LBW categories by
construction.

In summary, this preprocessing consolidation yields 10 discretized quantile birth-weight
categories used to allocate all observations into counts. This provides a detailed gradations
of the LBW region, and adding the aggregated NBW category provides the full range of
birth-weight outcomes in the dataset. This approach prevents scarcity in any one category,

and the data will be called counts data from here forward.

11



Marginal Dirichlet-Multinomial (DM) Likelihood
Introduction

In the previous section, we established the discretized birth-weight categories for this
study. Resulting in 10 LBW categories of quantile increments of 10% and the aggregated
11th category for NBW. Modeling the distribution of birth-weight counts must require han-
dling categorical partitions of all birth-weight categories, typically with small sample sizes
in observed samples, thus zero-counts in one or more categories. Relying on the standard
maximum likelihood estimation (MLE) approach of observing raw proportion of observa-
tion counts, often results probability of zero assigned to some categories not observed in
the sample. If we disregard this issue entirely, the MLE implicitly eliminates such cate-
gories that have not already been recorded so far, which is an unreasonable assumption for
further inference. Thus, a smoothing technique is required to prevent such categories with
zero-counts from being impossible in future birth-weight observations, while still balanc-
ing small enough probabilities to reflect how rarely (or never) such events appear in the
data, called overdispersion.

One powerful and effective solution is through the Dirichlet-Multinomial (DM) model,
which relies upon the Dirichlet-Multinomial conjugate pair, and interpretable via the P6lya
urn scheme (Mimno, 2025; Gundersen, 2020; Minka, 2000). The Dirichlet’s overdisper-
sion, effectively injects "pseudo-counts" or "zero-inflating" prior observations in all birth-
weight categories (Mimno, 2025; Wikipedia contributors, 2025¢). This ensured that the
marginal likelihood, or evidence, for any category remains strictly positive, i.e. non-zero
probability assignment for unobserved categories (Wikipedia contributors, 2025¢c). Here,
o = (oyq,...,0k) represent the Dirichlet hyperparameters, where each ay functions as a
prior count for its respective category. In this section, we will discuss the notation of the

natality dataset, formally derive the marginal DM likelihood criterion, and discuss how it is
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implemented in CART. By construction of the counts data, the actualized observations will
follow a multinomial distribution, with a minor technicality in the standard form discussed
in Section 2.

The DM likelihood is an appropriate choice for birth-weight modeling given count
observations. The Bayesian splitting criterion gives the model flexibility, CART offers an
interpretable algorithm for disentangling interactions, and modeling the full spectrum of

birth weights gives the breadth for targeted LBW prediction and intervention.
Data Format

Before deriving the marginal DM likelihood, it is best to describe the data format. We
have K € {10, 11} birth-weight categories, varying between 10 and 11 depending on model
scope. The predictor matrix is fixed at X € {0, 1}*7, where N = 128 is the number of to-
tal rows (and classes) where each row x; € {0,1}’ represents a dummy-encoded predictor

k=1,...K

vector for a given class i. The count data is the response matrix Y := [n;;];—, """y of dimen-

sions N X K, where n; i is a number of birth observations for class i, and quantile category k.

For classi=1,...,N, each x; of X is a 7-dimensional feature vector representing a unique
maternal-infant combination of predictors. The corresponding row y; = (n;1,...,n k) in
Y is of length K of counts observations for birth-weight categories k = 1,...,K. In other

words, for each unique predictor class x;, y;, tells us how many births fell into each category
k with probability 8;. This setup is from the preprocessing steps described in Section 2,
which dramatically consolidate the dataset into counts. The N total classes each x;,y; pair
concisely represent all predictors and corresponding birth-weight response frequencies.

To illustrate, if K = 3 and a particular predictor vector x; appears 10 times in the data,
with outcomes of 6 in class 1, 3 in class 2, and 1 in class 3, then y; = (6,3,1) and N; =
6+3+1=10. We can apply the DM likelihood model for multivariate, multinomial counts

data.
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Treatment of the Multinomial Coefficient

Before deriving the marginal DM likelihood, we will clarify why the usual multinomial
coefficient is omitted. After collapsing the dataset into N classes, each class i is summarized
by its counts vector y; = (n;1,...n; k) with the total counts in class i represented as N; =
Y& | 1. In the classic multinomial probability mass function, the factor

MultinomialCoeff(n; 1,...nix) = ( Ni ) = KN—"
ni1,..-NiK [Ti— mik!
enumerates every possible permutations of N; births inside of class i. Because the informa-
tion of the raw sequence of individual counts is not kept by consolidating the dataset into
counts data, we no longer model the possible orderings of N; births. Because this coeffi-
cient is constant with respect to the category probability vector 0; (Wikipedia contributors,
2025¢), it plays no role in the likelihood-split comparisons and therefore is omitted from
our criterion.

To justify why this is the case, suppose we partition N into two splits (instead of 10

or 11) Ni,N, where N = N; + N;. Then the partitioned counts Ny, N, have less possible

permutations of ny g and n; g counts, respectively. That is to say:

14



Derivation
The hierarchical model structure is as follows:

X; = dummy-encoded predictor vector for class i, i=1,...,128
yi | 0i,x; ~ AdjustedMultinomial (N;, 6;)
0; ~ Dirichlet (@ = (o, ...,0k)) (prior)

6; | yi.x; ~ Dirichlet(a +y;) (posterior)

Where N; = ZkK:l n; i is the row total and 6; = (6, 1,..., 6; g) is the true (but unknown)
category probabilities for class i.

From here forward, we will omit the index i from X;,y;, 8; to avoid confusion. This
changes to counts vector (7, 1,...,n;k) to (n1,...,nk), where n is naturally interpreted as
the first 10% quantile. Likewise let 8 = (6y,...,60k) be underlying Dirichlet prior, where
O is the probability of an observation falling into category k. The Dirichlet prior p(0) is

given hyperparameters o where each og > 0 obtains the density:

1 K o —1 F(ZkK—lak) K og—1
p(0) = p0la) = —< 116" = —F < 116"
B(«) k_Hl ¢ T'(0o) kl_]l ¢
for 6, > 0, and Y; 6, = 1. Here, B(a) is the multivariate Beta function, serving as
the normalizing constant. B(¢t) = 1S E ()a 9 with o =YX | o4 for brevity. The Dirichlet

component encodes our prior belief about the probabilities of 6; acting as "prior-counts"
of category k (Wikipedia contributors, 2025c). Given 6, the probability of observing a
specific count outcome follows the adjusted multinomial likelihood. This is the likelihood

of the category k for a given 6.

p(y| 6,x)

K
e - 1o
k=1

k 1%k k=1

omit
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Under this structure, the joint density of the data and latent probability vector is the product
of the Dirichlet prior and adjusted multinomial likelihood. Substituting both components

yields:

p(y,01x) = p(y|6,x)p(6)

ﬁ n L&t
— 0% 0%~
k k
k=1 B(a)k:1
N—— —_———

Adjusted Multinomial p(y|6,x) Dirichlet prior p(6)

— F(“O) K Q(nk—i-ak)—l
K Do) iy ©

o (91(n1+a1)_1, . 91(<nK+OCK)—1) - Dirichlet(oc n y) (posterior)

Here we see the Dirichlet prior’s effect is to "shift" of exponent in 9,:' *by oy — 1, adding
0 to ny in the exponent (Mimno, 2025). To achieve the goal of the marginal likelihood,

we integrate over all possible 6 of the joint density.

pivlax) = [ ply.0|x)p(0)d6

_ /( >Hk T He“k 'd6
Hk e /QH nk+ak

can be pulled outside of the integral since these do not depend on

2.1

()
HkK:1r(ak)

0. The integral in the final line is recognizable as the normalization integral of a Dirichlet

The constant

distribution, the Beta function with parameters (o +ny, @ +ny, ..., 0k + ng) can simplify

this line. Define my = oy + ny
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K
-1
/ 6" = B(m)
O k=1

_ Hszl I (my)
F(Zszl my)
ey D+ o)
C(CE ) e+ o)
_ ITE Tluc+ o)
T(N+ ap)

where N = Zszl n;. Now substitute the last line back into Equation 2.1 to achieve the

final closed-form marginal DM likelihood (Wikipedia contributors, 2025¢):

MN%@=§%fw+w

o) [, T(m + o)
N ITi- Do) krl(N+ ) (2.2)
_ I'(on) ﬁ [(ny + oy)

L(N+ao) g o)

Taking the log transform yields the equivalent form which we directly implement Equa-

tion 2.3 in the objective function criterion in rpart:

logp(y | o, x) = logI'(0t9) — log'(N + )
K (2.3)
+ Z (logF(nk+Ock) — logF(ak)>.
k=1

The equations above can be recognized as the DM distribution, sometimes called Com-

pound Multinomial or Pélya’s urn distribution (Mimno, 2025). This can be broken down

. . . .. . T o . .
component-wise to give an intuitive understanding: % shows observing n; instances

[(ap)

of category k updates the prior count oy, the ratio T(N+ag

y ensures that all the probabilities
for categories sum to 1, yielding the normalization factor across joint observation counts

(Gundersen, 2020; Wikipedia contributors, 2025c). While ¢y > 0, the likelihood will be
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nonzero even if n; = 0 for some categories and the prior oy acts as the smoothing term

guaranteeing p(y | &) > 0 for all possible outcomes (Mimno, 2025).
Splitting with Adjusted DM Likelihood in CART

Equation 2.3 is the final log marginal DM likelihood that will be implemented in CART.
Now we can understand how CART uses this criterion for evaluating possible splits of the
data.

A successful decision tree will try to rid as much variation, or impurity, within a sub-
group as it can, by proposing and evaluating splits on the predictors. For any dichotomous
predictor under consideration, CART proposes a left and right split on this predictor and
chooses the split that better explains the data. The split that is chosen is the one with
the highest likelihood, indicating a better model fit. Maximizing the improvement gain is
equivalent to minimizing the node impurity.

Using the adjusted marginal log-likelihood as our impurity measure, denote .Z},o4e for
the likelihood for a node’s data. Let a parent node count observations, Yparent b€ split into
Yieft, Yright We calculate first: Zharent = 10g p(Yparent | ¢, X) then, Leg = log p(Yiert | ¢, X)

and Zight = log p(¥right | ¢, X) and calculate the improvement gain of the split as:
AL = o%eft + Zight - gparent

Essentially, if A.Z is positive, the split results in an improvement where the DM crite-
rion favors the split with more homogeneity. If the multinomial coefficient was included
then for any partition, . would directly reward partitions with the larger number of possi-
ble orderings of the data. As noted in Section 2, N would be "better" than the two smaller
groups of size Nj and N,, irrespective of how the counts are distributed. The omission of
the coefficient makes the adjusted log-likelihood evaluate splits solely on how they reflect

the distributional fit.

18



To illustrate how CART evaluates A.Z, consider the scenario where a parent node with
N observations is evenly split (50/50) between two nodes, with a symmetric prior ¢ = 0.
Now we evaluate some predictor to split on. The marginal likelihood of both child nodes
might not exceed that of the parent since its split evenly thus no split is chosen. Conversely,
if there’s a predictor where one node gets all LBW observations, and the other all NBW,
the combined likelihood of child nodes would be much higher than the parent. This would
cause a large A.Z and be a significant split for CART. This matches our intuitive goal of

wanting to split on improved subclassification of the population.
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Chapter 3

TREE-BASED NONPARAMETRIC BIRTH-WEIGHT MODELING

Introduction

We model birth-weight risk using a tree-based, nonparametric approach while still mod-
eling the full spectrum of birth-weight outcomes, we focus primarily on gradients of in-
creased LBW risk among possible predictors. Birth-weights are first grouped into quantile-
defined categories so the tree can detect subtle shifts in risk across the finer LBW region,
providing a more granular view. Because all factors potentially effect birth weight, our
goal is to pinpoint combinations of predictors that consistently mark subpopulations with
an elevated LBW incidence.

To avoid "double dipping," or using the same observations to both fit the model and
set its prior, we derive LBW quantile cut points and subsequently construct the Dirichlet
hyperparameters from the previous year’s data (2020) and apply them unchanged to the
2021 dataset. Figure 3.1 shows the resulting prior vector . The left-panel shows full
model’s expected proportion of observations in both NBW and LBW categories, and the
right-panel shows the LBW-only model’s uniform prior due to the 10 LBW deciles. Year-
to-year, the birth-weight distributions are remarkably stable at the national level, making
2020 a suitable proxy for 2021.

Seven dichotomous maternal-infant predictors maternal race (mrace15), smoking dur-
ing pregnancy (cig_0), marital status (dmar), maternal age (mager), education (meduc),
adequacy of prenatal care (precareb), and infant gender (sex) are given to CART, search-
ing recursively for the largest improvement gain. To confirm stability and reliability of

the split predictors we will create a 10,000 bootstrap ensemble and compare the variable
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selection and stability across the trees. This will be further elaborated on in Section 3.
Constructing the Informed Prior
Quantile Cut Points & Informed Prior from 2020 Data

All birth weights less than or equal to the threshold of 2.5 kg are divided into ten deciles
comprising the 10% quantiles mentioned earlier. The LBW-region then smoothly transi-
tions from "extremely low" (lowest 10%) to "moderately low" (highest 10%), and pool
all NBW observations into the eleventh category denoted as counts_above_2.5kg. The
large NBW group in the full model allows us to see how this dominant category influences
tree splits and variable selection. Under different model scopes, the full and LBW-only
model contrasts the focus of the models. The LBW-only model centers its attention around
variation within the LBW-region in Section 3.

From the 2020 proportions we construct the Dirichlet prior, o = (¢, ..., 0k). In Fig-
ure 3.1 the priors show the strength in NBW under the full model and the uniform prior

under the LBW-only models across all categories.

Informed Dirichlet Prior Informed Dirichlet Prior

Prior Probability
Prior Probability

(a) Full model informed prior (b) LBW-only model informed prior

Figure 3.1: Comparison of informed Dirichlet priors based on 2020 quantiles
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DM-CART

Custom Objective Function & Splitting

We fitted CART using rpart, in R (Therneau et al., 2025), replacing the default Gini
index with the adjusted marginal log DM likelihood or simply the log likelihood for brevity.
Serving as our objective function, it output scores based on the reduction in deviance of a
given split, i.e. negative log likelihood output (Therneau et al., 2025; Therneau and Atkin-
son, 2023). When splitting, rpart computes the left and right split deviance calculation as
in Section 2. For instance, suppose we propose a split on smoking status. The objective
function evaluates separating the data into smoking and non-smoking mothers, as "distinct"
on the count response vector. The improvement is the reduction in deviance, rewarding
meaningful distributional shifts, thereby reducing heterogeneity in the node. Thus, dis-
tinctness here means the improvement gain from splitting under the predictor in question.
Throughout, “risk” is used heuristically to describe a subpopulations relative prevalence of

LBW outcomes.

Tree Results and Insights: Full Model

For the full model, Figure 3.2 shows the hierarchical structure, and Figure 3.6 ranks

improvement gain for each split. The full model splits as follows:
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Dirichlet-Multinomial Decision Tree

mrace15=0
T
cig_|0=0 dmar=0
dmar=0 precare5=0 cig_|{0=0 cig_|{0=0
mager=0 sex=0 mager=0 mager=0 sex=0 mager=0 sex=0
1
sex=0 precare5=0 precafe5=0 mager=0 sex=0 sex=0 mager=0 mager=0
1 1 1 1 1 1
precare5sbecafe5=0 mager=0 mager=@recare5=@recare5=0
1 1 1 1 1 1 1 1 1 1
medjc=0
1 1 1 1 11 1 1 1 1 1
11

Figure 3.2: Full model tree structure

The root node contains all of the 2021 birth counts, and naturally the vast majority fall
above 2.5 kg. The first, and largest deviance reduction, comes from separating the counts
based on race, i.e. Black mothers (mrace15=1) from all other mothers (mrace15=0). This
split yields the largest difference in birth-weight profiles and is shown to be the most infor-
mative predictor. This split aligns with documented discrepancies of race, playing a critical
role in LBW incidence (Kaiser Family Foundation, 2025; Colen et al., 2006). Among
Black mothers, smoking status supplies the next greatest improvement, whereas among
non-Black mothers, smoking status is considered only after marital status. That is to say,
smoking most strongly differentiates outcomes for Black mothers, while partnership status
matters more for non-Black mothers. These results show that further splits occur based on

racial demographics. Further, analysis demonstrate that the overall highest risk subpopu-
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lations are among unmarried Black smokers, where mracel5 = 1,cig_0 = 1,dmar = 0.
Overall, race, smoking, and marital status jointly account for the bulk of the total improve-
ment, confirming earlier evidence that Black smokers and unmarried non-Black moth-
ers constitute the highest-risk subpopulations among racial demographics (Kaiser Family
Foundation, 2025; Colen et al., 2006; Delcroix-Gomez et al., 2022) and Figure 3.2 and
Figure 3.6 visualize these results. Further splitting down the branch of Black smokers pro-
vides further nuance of the highest-risk subgroups (mracelb5 = 1,cig_0 = 1,dmar = 0).
This node splits on infant gender, where on average, female infants weigh less than males
(Van Vliet er al., 2009).

Generally, the lowest-risk subpopulations are where mrace15=0 — recall that smoking
status is considered after marital status of the mother. Despite the ordering of ranked splits,
smoking is a direct determinant of LBW incidence (Delcroix-Gomez et al., 2022). Af-
ter socioeconomic and demographic variables are considered, the model emphasizes more
biological and genetic predictors, namely gender, prenatal care, and maternal age. The
lowest-risk groups where mrace15 = 0,dmar = 1,cig_0 = 0, with age being the final pre-
dictor considered. Moreover, this branch has a depth of 4 while the highest-risk subgroups
have a depth of 6 and 7.

Surprisingly, the only case where education status (meduc) was used was when the
mother was Black, non-smoker, below 33 years old, without adequate prenatal care, and
had a female newborn, (i.e. mracel5 =1,cig_0=0,dmar =0, sex =0,mager =0,precareb =
0). Given that education has been noted by many (Martinson and Choi, 2019) to have an
effect on socioeconomic conditions, namely earnings, which might not be as strong of a
predictor as initially thought.

The full model structure provides insights into the direct risk stratification. This ap-
proach finds race, smoking status, and marital status as the dominant predictors, ranked as

the top three splits in Figure 3.6. The model shifts then toward biological predictors of
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maternal age, infant gender, and adequacy of prenatal care. Lastly education status is only

used in one split, providing the least improvement.

Tree Results and Insights: LBW-Only

Dirichlet—Multinomial Decision Tree

mrace15=0
p

n 128

sex=0 mager=0

n 64 n 64

n32 n 32 n32 n32

Figure 3.3: LBW-only model tree structure

As seen in Figure 3.3, the restriction to only LBW observations drastically changes the
tree’s structure. The distributional contrast between NBW and LBW disappears by this
restriction. Initially, this model has more homogeneity in the data yielding less drastic im-
provements. Race again dominates the root split, with the second-level splitters being now

infant gender for the mrace15=1 branch, and maternal age for the mrace15=0 branch; with
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smoking status, and marital status never appearing. By every infant already being below
2.5 kg., behavioral and socioeconomic factors that distinguish NBW and LBW, no longer
provide useful partitions. Instead, biological factors explain within-LBW heterogeneity. A
key takeaway from contrasting the two models is that the LBW-only model suggests Black
mothers continue to have a higher incidence of LBW newborns.

Variable importance among the full and LBW-only model are drastically different as
well. Figures 3.6 and 3.7 order predictors by the sum of total deviance each eliminates
across all splits, showing the contrast between predictor usage. The barplots reflects the
greedy search of CART, where early splits absorb a large share of heterogeneity and later
splits improve the fit only marginally, regardless of their actual effect on the response (Cen-

tre for Speech Technology Research, nd).

Depth-Controlled Model Comparison

To investigate how different models select variables as the tree grows, we refit both the
full and LBW-only CART models at maximum depths of 2, 3, 4, 5, while explicitly tracking
the smoking predictor to discern its roles among other predictors in different modeling
contexts. Figures 3.4 and 3.5 visualize the trees.

As the depths increase for the full model (Figure 3.4), the number of terminal nodes
expands from 4 at depths 2, to 19 at depth of 5, while the number of predictors rises
from 3 to 6. Race, infant gender, and marital status appear in every depth while maternal
age and prenatal care are included at depth 4. Moreover, cig_0 is selected at only at
depths 4 and 35, suggesting that once additional socioeconomic and biological variables
are available, smoking contributes little deviance reduction with the full spectrum of birth-
weight outcomes.

The LBW-restricted trees (Figure 3.5) the growth complexity stagnates after depth

of 3, starting at 4 terminal nodes at depth of 2 growing to only 5 at depth 3 through 5.
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The lessened number of leaves reflects the large homogeneity in the restricted LBW data.
Like the full model, the initial splitter is race and subsequent splits consider infant gen-
der, maternal age, then considering prenatal care adequacy only for Black male newborns
(mracelb = 1,sex = 1). These results highlight the stark contrast between the full model’s
ending complexity. Here, we consider how race, maternal age, infant gender, and prenatal
care effect LBW severity among LBW cases. Crucially, the predictors of cig_0, dmar, and
meduc are never considered, demonstrating that such socioeconomic factors do not play a
critical role in identifying added risk among LBW outcomes. That is to say that, smoking,
marital status, and educational attainment do not significantly contribute to increased LBW
severity.

It is clear that the predictor hierarchy and prioritization has shifted when the depth
parameter is restricted compared to the first fit LBW-only model in Section 3. Due to this
difference, we will employ a two-tier bootstrap procedure to confirm stability of variable

selection and importance.
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Decision Tree (Depth = 2) Decision Tree (Depth = 3)

mracel5=a mracelb=a
sex=a sex=a
sex=a sex=a
Maximum depth = 2 Maximum depth = 3
Decision Tree (Depth = 4) Decision Tree (Depth = 5)
mracel5=a mracelb=a

J sJ:a sex=a
sex=a sex=a

dmar=a a ar=.
cig
cig_l0=a  mager=a precare5=a mager=a mager=a
pre(rg[

Maximum depth = 4 Maximum depth = 5

Figure 3.4: Full model tree structures, showing growth patterns at different maximum
depths (2,3,4,5). The trees demonstrate variable selection patterns with increasing depth,

highlighting the growing complexity of the model structure.
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Decision Tree (Depth = 2) Decision Tree (Depth = 3)

mracel5=a mracel5=a

mager=a

sex=a mager=a
recar
Maximum depth = 2 Maximum depth = 3
Decision Tree (Depth = 4) Decision Tree (Depth = 5)
mrarm‘%:a mrarslﬂﬁza
sex=a mager=a sex=a mager=a
recare5=a recare5=a
Maximum depth = 4 Maximum depth = 5

Figure 3.5: LBW-only model tree structures, showing growth patterns at different maxi-
mum depths (2,3,4,5). The trees demonstrate variable selection patterns with increasing

depth, highlighting the limited growth among LBW outcomes.
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Bootstrap Analysis & Methodology
Introduction

To test whether the splits observed in Section 3 are specific to one realization of the
2021 data, we construct an ensemble of B = 10,000 parametric bootstrap trees. For each
replicate, resampling perturbs the data into two levels, mirroring the sampling hierarchy in
the DM model. That is to say, we will focus on (1) between-class counts and (2) within-
class counts. These steps will be the stages, or tiers, of the bootstrap procedure. First, we
randomize how the total number of births 7 is partitioned across the N = 128 predictor
classes and secondly, given the total class partitions, we randomize how those births are
allocated among the K birth-weight categories. This will deliver uncertainty estimates that
are coherent with our criterion used to fit each tree. Throughout, "row" and "class" are
synonymous.

The goal of the bootstrap procedure is to provide robust and stable probability esti-
mates 7; ; for each category k. The frequencies in Table 3.1 therefore have a defensible

interpretation as the bootstrap probabilities of variable inclusion.
Justification of the Two-Tier Bootstrap Procedure

To motivate the multinomial assumption in each tier, consider the consolidated counts
data. It is an aggregated N x K matrix where the cell entries n; ; are sums of total number
of births for class i and category k. These sums are not individual observations. Treat-
ing the row vector y; as an i.i.d. "case" would breech the key independence assumption
that underpins case-resampling (Davison and Hinkley, 2021, slide 47) (Hrba et al., 2022).
Moreover, the counts data holds the same structure as a contingency table: conveying the
frequencies of any two multivariate vectors, in this case class profiles by birth-weight cat-

egories (Wikipedia contributors, 2025b). De-aggregating these frequencies into individual
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observations before performing bootstrap resampling is required to preserve the within-
row dependence, preserving the data structure (stats.stackexchange.com, 2025a), precisely
because each row is a vector of summary statistics (i.e. sum of total row observations)
(Wikipedia contributors, 2025¢). Further, when sampling any row, the counts vector has
fixed proportions of LBW and NBW counts, thereby providing no within-row random-
ness. Since NBW proportion greatly exceeds that of the LBW counts this would greatly
overshadow the LBW variability.

When individual birth records cannot be recovered, the solution is a model-based para-
metric bootstrap that respects both levels of randomness while maintaining faithful to the

DM model introduced in Section 3.
Methodology & Procedure

Formally, the two-tier bootstrap resampling procedure is defined here. First, 7 defines
the grand total counts. p = (py,...,pn) are the empirical proportions across N classes.
The bootstrap probability estimates for class i across K categories are represented as, &; =
(%i1,..., %K), and are the mean across the B bootstrap replicate trees. Additionally, the

predictor matrix X remains fixed; only response counts are resampled.

(grand total of births),

’ﬂ
1
=
M=
S
=

|
T
_

(row total for class i),

=z
I

[ ngle
3

p=(p1,---,pN) (empirical class shares),

=
I

NSz T

fti=(Ri1,..., k) (posterior DM mean for class i).

Recall that the posterior distribution in Equation 2.1 for class i is:

0| yi,x; ~ Dirichlet(a+y;), 2.1)
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whose mean is:

K
. Nk + Ol
iy = E|6 | = 5=, =) 0.
ik [ l,k|yl] Ni + oo Qo ];1 k
All 7; x represent the mean bootstrap probability estimates (across B) for combination i, k.
Importantly, these K estimates are fixed. Instead of directly inferring about 6;; under

the posterior, we use the shrinkage estimate #;;. This is referred to as fixed under the

multinomial distribution in Tier 3 Wikipedia contributors (2025d); Duke University (nd).

Tier 1: Between-class counts resampling First we draw a new vector of class totals
from a multinomial distribution, sampling once per class. This tier propagates sampling

noise in relative prevalence of the N predictor profiles.

n; = (nj,...,ny) ~ Multinomial(7, p) 3.1

Tier 2: Within-class counts resampling Conditioned on the newly drawn total n; > 0,

resample the K category counts.
yi = (ﬁm, e ,ﬁi_‘[() ~ Multinomial(n;‘, fC,) 3.2)

Since #; = (& 1,..., R k) is plugged-in and held fixed here, each vector #; under class i
is referred to as the bootstrap probability estimates for K birth-weight categories. Each
bootstrap replicate inherits prior information via o, allowing both inter- and intra-class
sampling variability to be propagated. The estimates are interpreted naturally as the best
guess for the probability of a future birth from class i to fall into category k.

After the resampled counts are obtained, Y = [7i; ] is paired with X and fitted with the
DM-CART procedure. From each tree we record the predictor set used in splitting and the
root split predictor. Aggregating across B bootstrap trees yields the frequencies reported in

Table 3.1 and the predictor depth comparison in Figures 3.11, 3.12. By tier 1 capturing
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the uncertainty in class prevalence, and tier 2 capturing uncertainty of the proportions of
LBW and NBW within each class, these frequencies can be interpreted as the bootstrap
probability of variable inclusion under the DM hierarchy.

For each class i, we compute the mean bootstrap probability estimates in 7; and hold
this vector as fixed when we generate the replicate counts §; ~ Multinomial(n*, ;). Rather
than resampling a new Gl(b) ~ Dirichlet(a +y;) inside every bootstrap replicate b, we use
the mean estimates and keep the resampling procedure focused on sampling variability of
the observed counts data. This approach eliminates the need for a Monte-Carlo procedure

and prior information o from being counted twice.
Variable Selection Frequency

Table 3.1 distills the frequency of variable selection across the bootstrap ensemble.
These are the probability estimates for variable inclusion under each model, highlighting
the relative importance under each context. In both the full model and LBW-only model,
maternal race consistently emerges as the dominant predictor, appearing as the initial split
variable in 100% of the bootstrap trees. This finding reinforces the conclusion drawn in
earlier analyses (see Section 3) that racial disparities represent the most prominent signal
in the data. Figures 3.11 and 3.12 show the distribution of each predictor’s depth for the
full and LBW-only model respectively.

Beyond race, the variable selection patterns diverge considerably between the two mod-
els. In the full model, six of seven variables (infant gender, marital status, prenatal care,
smoking status, and race) are selected in every tree (100%), while education status is se-
lected in approximately 37.94% of the ensemble. Despite its relatively lower selection
frequency, maternal education is deeply positioned in the trees, with an average depth of
5.52 in Figure 3.11, suggesting weak but possibly contextually relevant role in specific sub-

populations. In contrast, marital status and smoking status appear much closer to the root
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at depths 1.69 and 1.52 respectively, indicating stronger global influence across the data.

In the LBW-only model, the frequency and depth of variable inclusion reflects the shift
of model focus. While race and infant gender remain universally selected (100%), only
maternal age maintains high inclusion at 97.41%, and prenatal care follows at 63.51%. The
remaining variables occur rarely or not at all with marital status (9.15%), smoking status
(1.96%), and maternal education (0%). The stark drop in inclusion frequency suggests that
given the LBW outcomes, the model reduces its reliance on broader social determinants
like education and marital status, and concentrates on variables more directly related to
biological and perinatal features such as age and care access.

This interpretation is further supported by the depth analysis in Figures 3.11, 3.12. For
LBW-only model, maternal race is the top splitter, followed by infant sex (mean depth
of 1.12), maternal age (1.15), indicating the early and consistent splits. Prenatal care ap-
pears at an intermediate depth (2.02) and less frequently included variables exhibit greater
depth, such as marital status and smoking status (2.83 and 2.94, respectively). Notably,
maternal education with negligible frequency and high depth (3.00), emphasizing minimal

contribution in LBW context.
Ensemble Predictions & Uncertainty

Following the bootstrap resampling procedure, each replicate yields a vector of pre-
dicted probabilities in Y for the birth-weight categories aggregated across B. For every
terminal node subgroup, we take the mean across all replicates to obtain 7; ;: the estimated
probability that a birth in class i falls into birth-weight category k. Sampling variability
1s summarized by empirical 2.5- and 97.5-percentiles of each birth-weight category distri-
bution. These 95% percentile intervals are shown along side point estimates in Tables 3.2
and 3.3. Because the interval is simply the middle 95% of the resampled values, it is

distribution-free (Penn State University, nd). For some i,k combination, the interval is
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read as 2.5% (or 97.5%) of replicates assign smaller (larger) probability than the reported
limit (Penn State University, nd). Figures 3.8 and 3.10 display the full distribution of two
contrasting maternal profiles. Such profiles are referred to as "high-risk" (class 69) and
"low-risk" (class 28) and reflect reasonably assumed to face adverse and favorable birth-

weight outcomes, respectively.

* High-risk (i = 69): unmarried, Black, smoking mothers under 33 with < High-
School education, inadequate prenatal care, delivering female infants (mracelb =

I, dmar =0, cig_0 =1, sex =0, mager =0, prenatal =0, meduc =0).

* Low-risk (i = 28): married, non-Black, non-smoking mothers aged 33+, > High-
School education, adequate prenatal care, delivering male infants (mracel5 = 0,

dmar =1, cig_0=0, sex =1, mager = 1, prenatal = 1, meduc = 1).

In the full model, Figures 3.8, 3.9 and Table 3.2. Specifically, in Figure 3.8 we see
that both profiles have a very high predicted probability of delivering a NBW infant, yet
this high-risk’s NBW chance (83.6%) is roughly 7% points lower than the low-risk profile
(90.9%). In Figure 3.9 we focus on the probabilities within LBW-region under the full
model. This diagram shows the drastic differences of risk among the high- and low-risk
profiles, with an average probability of 1.64% versus 0.908%, respectively. For the most
severe LBW category (C1 or k = 1), the highest probability is triple that of the low-risk
subgroup (1.9% vs. 0.8%). The percentile intervals are extremely narrow (~ +0.002)
indicating remarkable stability across all bootstrap replicates.

Likewise, the LBW-only model in Figure 3.10 and Table 3.3, provides more nuance
among the LBW region. The high-risk profile retains a clear disadvantage in the extreme
left-tail (12.3% vs. 8.6% in C1), but the two subgroups converge in the intermediate cate-
gories, and in a few moderate LBW categories the low-risk profile even slightly exceeding

high-risk subgroup (such as in C8 or k = 8 of Table 3.3). Percentile interval widths still
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remain narrow (=~ +0.008), illustrating that these nuanced differences are nonetheless es-
timated with high stability and precision.

In identifying determinants of LBW outcomes, this procedure clearly delineates a con-
sistent and statistically reliable separation between high- and low-risk profiles, even when

the absolute differences in NBW probabilities appears modest.
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Table 3.1: Comparison of Variable Importance in Full Model and LBW-Only Model

Full Model LBW-Only Model

Initial Split Variable

mracel5 1.0000 1.0000
Variable Frequency

sex 1.0000 1.0000
dmar 1.0000 0.0915
mracel5 1.0000 1.0000
mager 1.0000 0.9741
precare5 1.0000 0.6351
cig_ 0 1.0000 0.0196
meduc 0.3794 0.0000

Note: The table shows variable frequency (proportion of trees containing
each variable) and initial split variable (normalized measure of predictive

contribution) for both models.
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Table 3.2: Mean probability estimates 7;; (with 95% bootstrap percentile intervals) for

high- and low-risk birth-weight subgroups under the full model.

High-risk Low-risk
Category k

/1 25% 97.5% 7 2.5% 97.5%
1 1.90 % 0.0180 0.0202 0.80 % 0.0075 0.0088
2 1.72% 0.0163 0.0181 0.86 % 0.0080 0.0096
3 1.58 % 0.0150 0.0166 0.88 % 0.0080 0.0100
4 1.63 % 0.0156 0.0170 090 % 0.0083 0.0102
5 1.69 % 0.0162 0.0176 098 % 0.0090 0.0112
6 1.61 % 0.0154 0.0168 091 % 0.0087 0.0098
7 1.63 % 0.0157 0.0170 093 % 0.0088 0.0101
8 1.78 %  0.0172 0.0185 1.08 % 0.0102 0.0117
9 1.32% 0.0126 0.0138 0.81 % 0.0075 0.0090
10 1.52% 0.0146 0.0158 0.96 % 0.0089 0.0106
11 83.62 % 0.8330 0.8391 90.92 % 0.9026 0.9132

Note: 7 values are reported as percentages; percentile-limit columns remain on

the [0, 1] scale. Estimates are based on B bootstrap replicates.
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Table 3.3: Mean probability estimates 7;; (with 95% bootstrap percentile intervals) for

high- and low-risk birth-weight subgroups under the LBW-only model.

High-risk Low-risk
Category k

/1 25% 97.5% 7 2.5% 97.5%
1 1228 % 0.1143 0.1267 8.63 % 0.0802 0.0928
2 10.61 % 0.1014 0.1090 9.73 % 0.0911 0.1030
3 9.75% 0.0935 0.1003 9.87 % 0.0930 0.1041
4 9.90% 0.0965 0.1018 10.18 % 0.0974 0.1064
5 10.43 % 0.1014 0.1069 10.96 % 0.1054 0.1145
6 974 % 0.0948 0.1011 10.16 % 0.0970 0.1050
7 9.83 % 0.0953 0.1033 10.30 % 0.0973 0.1082
8 10.57 % 0.1031 0.1088 11.42% 0.1078 0.1218
9 801% 0.0776 0.0837 8.81 % 0.0835 0.0933
10 887 % 0.0858 0.0941 9.94 % 0.0940 0.1053

Note: 7 values are reported as percentages; percentile-limit columns remain on

the [0, 1] scale. Estimates are based on B bootstrap replicates.
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Key Split Variables in Full Model Decision Tree
Ranked by Total Split Contribution

contribution | <% | 1-3% [ 3-10% [ >10%

Mother's Race (#1)

Marital Status (#2)

Cigarette Use (#3)

Cigarette Use (1) (#4)

Marital Status (1) (#5)

—
41:I
=}

Prenatal Care

Mother's Education (#7)

Marital Status (2) (#8)

Prenatal Care (1) (#9)

Child's Sex (#10)

Child's Sex (1) (#11)

Marital Status (4) (#12)

Cigarette Use (2) - (#13)
Prenatal Care (2) - (#14)

Mother's Education (1) (#15)

Child's Sex (4) (#16)
Child's Sex (10)
Cigarette Use (3) . (#18)
Prenatal Care (13) l (#19)

Child's Sex (11) l (#20)

#17)

2,500 5,000 7,500 10,000 12,500

o

Split Contribution Value
Data from 2021 | Values represent summed improvement in tree fit when variable is used for splitting

Figure 3.6: Full Model Ranked Improvement. Rankings represent summed reduction in

deviance (improvement in model fit) across all nodes where each variable is used for split-

ting in the tree. Plot only displays top 20 ranked variables.
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Key Split Variables in LBW-only Model Decision Tree
Ranked by Total Split Contribution

contribution [ <16 [l 1-3% [ 3-10% [ >10%

Mother's Race (#1)

Child's Sex #2)

Child's Sex (1) #3)

Marital Status (#4)

Mother's Age (#5)
Mother's Age (2) I (#6)

Prenatal Care I (#7)
Prenatal Care (1) I (#8)
Mother's Age (1) | (#9)

0 100 200 300 400 500 600

Split Contribution Value
Data from 2021 | Values represent summed improvement in tree fit when variable is used for splitting

Figure 3.7: LBW-Only Model Ranked Improvement. Rankings represent summed reduc-
tion in deviance (improvement in model fit) across all nodes where each variable is used

for splitting in the tree. Plot displays all ranked variables.
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Birth—weight Category Bootstrap Probabilities
High-Risk Subgroup

1.00 C1:227-1170g
C2:1170-1644 g
C3:1644-1899 g
C4: 1899-2069 g
0.75

C5: 2069-2183 g
C6: 2183-2270 g
C7: 2270-2350 g
C8: 2350-2410 g
C9: 2410-2460 g
C10: 2460-2500 g
C11:> 2500 g

Probability
o
3

0.00
C1 C2 C3 C4 C5 C6 Cc7 c8 Cc9 C10 Cil1

Low-Risk Subgroup

1.00

o
3
a

0.50

Probability

0.00

C1 Cc2 C3 C4 C5 C6 C7 Cc8 Cc9 C10 Cl1
Figure 3.8: Full model: Mean bootstrap probability for each birth-weight category

(C1-C11) in the high- and low-risk subgroups. Error bars show the 95 % percentile in-

terval over the B bootstrap trees.
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Birth—weight Category Bootstrap Probabilities

High—-Risk Subgroup C1:227-1170g
C2: 1170-1644 g
C3: 1644-1899 g

0.020 C4:1899-2069 g
C5: 2069-2183 g
C6: 2183-2270 g
C7: 2270-2350 g
0.015 C8: 2350-2410 g
E C9: 2410-2460 g
2 C10: 2460-2500 g
8 0.010
o
0.005
0.000
C1 Cc2 C3 C4 C5 C6 c7 c8 C9 C10
Low-Risk Subgroup
0.020
0.015
2
=
[
Q
<)
o

0.010
N ' ' ' I I '
0.000

C1 Cc2 C3 Cc4 C5 C6 Cc7 Cc8 C9 C10

Figure 3.9: Full model (excluding the NBW column): Probability estimates and intervals

are as in Fig. 3.8.
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Birth—weight Category Bootstrap Probabilities
High—-Risk Subgroup
C1:227-1170g
C2:1170-1644 g

C3:1644-1899 g
C4:1899-2069 g

0.10 C5: 2069-2183 g
C6: 2183-2270 g
C7:2270-2350 g
C8: 2350-2410 g
C9: 2410-2460 g
C10: 2460-2500 g

0.05

0.00

c1 c2 c3 c4 c5 C6 c7 cs c9 C10

Low—Risk Subgroup

0.00
C1 c2 C3 C4 C5 C6 c7 Cc8 Cc9 Cc10

Figure 3.10: LBW-Only model (10 categories): Mean bootstrap probability for each birth-

Probability

o
=
o

Probability

weight category in the two risk groups with 95% percentile intervals.
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Distribution of Depths for Each Predictor Variable
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Figure 3.11: Full model: Distribution of variable depths across the ensemble. Each panel
shows a histogram indicating how frequently a given variable appears at each tree depth,
where depth O corresponds to the root node. Variables closer to the root are generally more

important in the model.
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Distribution of Depths for Each Predictor Variable
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Figure 3.12: LBW-Only model: Distribution of variable depths across the ensemble. Each
panel shows a histogram indicating how frequently a given variable appears at each tree
depth, where depth O corresponds to the root node. Variables closer to the root are generally

more important in the model.
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Chapter 4

CONCLUSION & FUTURE WORK

This study introduces a Bayesian tree-based methodology to investigating determinants
of LBW using a nationally representative dataset. By the integration of the DM likelihood
into the CART framework, the model addresses both data scarcity in rare outcome classes,
with addressing the need for a more flexible and interpretable modeling structure. Using
historic data, the quantiles inform the priors binning procedure, creating the necessary
birth-weight categories. The quantile-based categories enable the the informed prior to
represent subtle gradients in the LBW-region, and enabling detection of distributional shifts
given a set of predictors. Additionally, the proposed bootstrap methodology handles the
consolidated counts data, while the results yield stable and reliable estimates across the
ensemble.

A consistent theme in this project is that maternal race, marital status, and smok-
ing status were dominant indicators of LBW risk. Furthermore, the restricted LBW-only
model shifted the focus from socioeconomic and demographic predictors to biological and
behavior-based variables. Such variables include maternal age, infant gender, and prenatal
care. Note that these findings align with epidemiological literature, demonstrating the util-
ity of our proposed modeling framework to extract and interpret clinically relevant rules
from high-dimensional data.

However, the present analysis is bounded by a constrained set of binary predictors and
reductionist encoding of sociodemographic and behavioral traits. In further analysis, clin-
ically relevant information could be utilized instead of discarded by encoding predictors
into binary. Further, the race predictor currently represents a coarse proxy of demographic

and socioeconomic conditions in further studies should refine this important predictor to
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capture more social and cultural dimensions. The most natural next step is enhancing
the data with a richer predictor set of maternal-infant health and environmental indicators.
Promising health related variables include: history of hypertension (Ardissino et al., 2022),
diabetes (Mi et al., 2017), BMI (Gul et al., 2020) , mental health (Nomura et al., 2007),
and prior pregnancy complications (Cutland et al., 2017). Including these variables could
enhance the model’s ability to further classify at-risk subgroups, since they are all known
to affect fetal growth. Incorporating environmental and contextual variables can expand the
model’s scope and abilities. Structural determinant such as air quality metrics, neighbor-
hood crime rates, housing conditions, food accessibility, and proximity to prenatal services
may interact with biological and behavioral risks in meaningful ways. Their inclusion
would support a more holistic understanding of LBW outcomes. Also, the temporal trends
of any of these variables is worth while to investigate due to the consistent annual reporting
of the natality dataset.

Moreover, this modeling framework has the potential to be enhanced as a practical
tool for clinical triage or public health screening. Future work should focus on adapting
the modeling framework into a practitioner-friendly risk calculator suitable for intake as-
sessments or integration into electronic health records. This would significantly enhance
accessibility for health practitioners and support early identification of at-risk pregnancies.

This work contributes a flexible and interpretable modeling approach for modeling
LBW determinants and lays the foundation for future interdisciplinary research that in-
tersects statistical modeling, clinical practice, and public health policy. Expanding the set
of predictors and translating the model into operational tools would be critical steps toward

leveraging these insights into actionable health interventions.
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