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Abstract

This paper explores the application of deep learning techniques at Ari-
zona State University’s (ASU) Compact X-ray Light Source (CXLS) to an-
alyze experimental data from various modalities, primarily focusing on X-
ray crystallography using the Dectris Eiger 4M detector. Traditional meth-
ods of predicting photon energy and sample-detector distance are challenged
by dynamic scattering, intrinsic noise, and the CXLS low flux X-ray beam,
prompting the need for more advanced solutions. Utilizing the CrystFEL[7]
software, we simulate diffraction images for protein 11C6.pdb across a matrix
of nine variable combinations involving photon energies and camera length.
Our approach employs convolutional neural networks (CNNs), testing various
architectures for binary classification of peak detection and prediction of ex-
perimental parameters. The scope of this research wishes to further expand
this with modifications in the architecture to accommodate for spectroscopy
data, although this is beyond the extent of this manuscript. By integrat-
ing different experimental conditions, we anticipate broader applications and
improved experimental outcomes.

Introduction

1.1 ASU CXFEL Labs

At Arizona State University (ASU), we are at the forefront of developing the world’s
first Compact X-ray Light Source (CXLS), a scaled-down 10 meter version of the
traditionally large X-ray Free-Electron Lasers (XFELSs), which typically extend over
a kilometer. This revolutionary device emits X-ray pulses at the femtosecond scale
and operates at a kilohertz frequency. These X-rays are used to scatter off of a
sample where we can collect scatting images and collect data on these samples.
Because of the nature of this X-ray beam, samples receive low radiation damage

and high resolution scattering images can be collected.
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Figure 1: This is an example of the X-ray beam interacting with a sample and
the diffraction pattern being detected. This specific illustration is from the Linear
Accelerator Coherent Light Source (LCLS). [1]

The ability to scale down our X-ray light source comes from our techniques
to generate X-rays. Other sources are so long in part due to the use of magnetic
undulator to cause X-ray emission from relativistic electrons. At ASU we align our
relativistic electron beam with a high power IR laser in space and time, generating
X-rays from a process called Inverse Compton Scattering. The compact nature of
the CXLS results in significant cost reductions, making these machines more viable
for construction at other facilities. This will push research in fields like material
science and pharmaceuticals that greatly benefit from having X-ray light sources
for research.

Central to the functionality of the CXLS is the Dectris Eiger 4M detector, known
for its high resolution and sensitivity for X-ray detection, which are crucial for cap-
turing intricate diffraction patterns from protein crystals. However, the analysis of
these patterns is complex and often labor-intensive, necessitating manual correc-
tions to address data inaccuracies. Additionally, the CXLS has a low flux X-ray
beam compared to other XFEL’s, which complicates peak detection in both crys-
tallography and spectroscopy images. The presence of scattering noise, largely due
to the water content within protein samples, further complicates analyses. These
challenges underscore the need for developing advanced methodologies that improve
both the precision and efficiency of data processing at the CXLS.

1.2 Project Outline

The goal is this project is to lay the foundations for developing data analysis tech-
niques for the CXLS using deep neural networks. Due to the CXLS still being in the
preparation phase for experiments, we will be simulating diffraction data to train
our models. This diffraction data is the resulting Bragg peaks from the experiment.
In crystallography, Bragg peaks are the result from the constructive interference of
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X-rays scattered by the planes of atoms in a crystalline lattice, and they are crucial
for determining the crystal structure of materials. Bragg peaks are defined by the
following relationship, Bragg’s law.

nA = 2dsin(6) (1)

Where n is the order of the diffracted wave, A is the wavelength of the X-rays,
d is the spacing between the crystal planes in the material, and # is the angle at
which the X-rays strike the crystal planes.

For our simulations, we use the protein designated as 11C6.pdb, sourced from
the RCSB Protein Data Bank [4]. According to the RCSB Protein Data Bank,
the proteinase K from Tritirachium album limber is characterized by a resolution
of 0.98 A. This enzyme is part of the tetragonal crystal system and belongs to
the space group P432,2[4]. The unit cell dimensions are defined as a = b = 58.3
A, ¢ =63.6 A, with the point group being 4/mmm, or 422 []. This detailed
structural information is fundamental to our analysis and facilitates a more precise
understanding of the protein’s diffraction patterns. Below is a visual representation
of the tetragonal crystal system[3].
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Figure 2: Tetragonal Crystal System.

Using the X-ray diffraction images, we want to be able to determine attributes
of 1IC6.pdb. However, before we can do that, we need to use these images to
determine attributes of the experimental system. The three attributes we want to
determine in this project from our detraction data is are there Bragg peaks present
or is it just noise, what the incident photon energy is, and what the camera length
is. In addition, we want to be able to detect where Bragg peaks are located. Due to
the low photon flux from CXLS, especially compared to other X-ray light sources,
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the scattered Bragg peaks will appear much closer to the noise in the image, caused
by water present in the proteins.

The incident photon energy greatly changes the diffraction data because of the
relationship between the wavelength of the incident light and its energy. We can
describe this relationship by a form of the Plank-Einstein relation.

hc
E:T (2)

Where FE is the energy, h is Planck’s constant, ¢ is the speed of light, and A
is the wavelength. We can see the dependence on A between the relationship with
energy and with Bragg Law.

The camera length is another factor that will greatly change the diffraction
data. As the camera length grows, there will be an increase angular spread from
the scattered X-rays. An increased camera length can increase the spacial resolution
of the data by spreading the signal over a greater area, however, this will also result
in a weaker signal. Understanding these two parameters is a critical first step for
data analysis.

2 Methods

2.1 Data Simulation

To contextualize the methodology employed in our simulations, it is pertinent to
discuss the data format utilized—HDF5 (Hierarchical Data Format version 5) [2].
This format is particularly favored in the field of crystallography for its capability to
efficiently handle and store large datasets, such as those typically generated during
crystallographic experiments [6]. One of the notable features of HDF5 is its support
for storing a flexible number of individual snapshots within a single file [6]. This
capability is essential for capturing multiple images under varying experimental
conditions without the need to switch files, significantly streamlining the analysis
process [6].

Moreover, HDF5 files facilitate the clear visualization of Bragg peaks within
these snapshots. Bragg peaks are crucial for determining the atomic structure
of crystals, as they reflect the positions and intensities of diffracted X-rays. The
ability to observe and analyze these peaks across various snapshots enhances our
capacity to discern changes and similarities in crystal structures under different
experimental conditions. The attributes of HDF5 make it an exemplary choice for
crystallography, where precision, efficiency, and meticulous data management are
paramount.

Following the selection of the appropriate data format, we proceeded to simulate
the diffraction patterns using the pattern_sim module of the CrystFEL software
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suite [§]. These simulations are designed to closely replicate the scattering patterns
characteristic of real experimental data, providing a solid foundation for training
our deep learning models. An example of the configuration script used for our
simulations is depicted in Figure[I], illustrating the setup and parameters that guide
our simulation process. This strategic approach not only ensures the accuracy of our
simulations but also enhances the effectiveness of the subsequent analysis performed
by our deep learning models.

#!/bin/bash

# Global configurations

NAME="§1" # Experiment or job prefix

TASKS="¢2" # Number of tasks to request
for each job

PHOTON_ENERGY="$"6000 # Photon energy input

#

# pattern_sim specifications

GEOM="Eiger4M.geom" # Geometry file

CRYSTAL="1IC6.cell" # Crystal file

INPUT="1IC6.pdb.hkl" # Constant HKL input file
POINT_GROUP="4/mmm"

CRYSTAL_SIZE_MIN=10000

CRYSTAL_SIZE_MAX=10000

5 SPECTRUM="tophat"

SAMPLING=7
BANDWIDTH=0.01
N_PHOTONS=3e8
BEAM_RADIUS=5e-6
NUMBER_OF_PATTERNS=10000
#

Figure 3: Example of BASH script used with pattern_sim [§] to simulate diffraction
data.

The first fixed parameters in our simulation are the detector geometry of the
Dectris Eiger 4M, which produces a 2069x2163 image. Additionally, we have fixed
parameters for the protein and its 10 micro crystal environment, as well as for the
incident X-ray beam, including photon flux and beam radius. We create 9 total
datasets of simulated data by varying the previously mention parameters photon
energy and camera length. Table (1| below outlines these datasets.
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Table 1: Datasets generated by varying camera length and photon energy.

Dataset | Camera Length (m) | Photon Energy (keV)
01 0.15 6
02 0.15 7
03 0.15 8
04 0.25 6
05 0.25 7
06 0.25 8
07 0.35 6
08 0.35 7
09 0.35 8

All of the resulting images from pattern_sim are pure signal from the diffraction
simulations, and will call these peak images.

To create the realistic dataset, we must generate the water background images
which introduce noise to each respective dataset. These are the diffraction patterns
caused by the water within the proteins that make analysis of Bragg peaks difficult.
To simulate these water background images we use a software developed by Kirian
Lab, reborn, which is a Python package for X-ray diffraction simulation and anal-
ysis under the Born approximation [5]. Again, like with peak images, we use the
Dectris Eiger 4M detector geometry, and very the incident photon energy and cam-
era length. Unlike with peaks data, we only simulate 1 water background image for
all 9 data sets. This is because we expect the water background noise to be fairly
consistent from shot to shot. We will refer to these images as water-background
images.

As we see here, the photon energy is held constant at 6keV, while the camera
length is 0.15m in Figure [ and 0.35 in Figure [f
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Figure 4: Camera length of 0.15 Figure 5: Camera length of 0.35

To create the realistic noisy images from the simulated peak and water-background
images. We simply overlayed the water-background images and peak images with
the same parameter combination; that is, the same photon energy and camera
length values. We will refer to these as overlay images.

2.2 Data Management

In handling all of the generated images with different parameter combinations, file
management was an important part of the development of this project. Figure [f]
shows the base images/ directory and the structure that is used for the organiza-
tion of these images. Notably, the 1abels directory holds the binary heatmaps to
predict Bragg peak location. Its purpose is to predict Bragg peaks upon testing.
However, in the time frame of this project we did not have the time necessary to
develop this feature, and it will be discuss later what we used for our labels for the
different classification problems.
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images/
| _peaks/
|01/
01 _6keV_clen01_000001.h5

| 02/
t 02_7keV_clen01_000001.h5

09/
t 09_8keV_c1en03_000001.h5

| labels/
| peaks_water_overlay/
| _water/

Figure 6: Directory structure for images.

Multiple Python scripts were developed to create a robust file management sys-
tem. These files are process_ directory.py (Figure , process.py (Figure ,
path.py (Figure[J), data.py (Figure [10). The development of a robust file man-
agement system is fundamental to this project, especially as it continues to scale
with future development.

process_directory

+create_and_populate_dirs(target_path: str)
+validate_directories(base_path: str)

+process_data(paths, image_directory, percent_empty: float)
+main(images_dir, force: bool, percent_empty: float)

Figure 7: process_directory.py UML diagram

Upon running process_directory.py, the script calls classes from process.py,
path.py. Namely, the Processor class which is responsible for generating the
overlay images, and the PathManager class which keeps track of all the generated
files, by selecting the datasets. But process_directory.py takes the peaks data
(images/peaks) and casting every pixel into a binary value (0 or 1) based on a
threshold. It’s important to note that since the peak images were only signal,
this threshold was arbitrary because everything diffracted in the simulation were
photons. The script then saves the labeled images in images/labels which will be
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used later after the scope of this course. This script also takes the water-background
image (images/water) of the respective dataset, and adds the two matrices from
the peak image and water-background image. These overlay images are saving in
mages/peaks_water_overlay.

Processor

-paths: object

-threshold: int

-datasets: List[int]
-dataset_dict: dict
-parameters_dict: dict
-water_backgrounds: list
-water_background_dict: dict

+_init_(paths, datasets: List[int])

+init_water_background() : : list

+convert_water_backgrounds_to_dict() : : dict

+selected_datasets() : : dict

+dataset_init() : : dict

+get_parameters() : : dict

+new_attibute(file_path: str, new: tuple)

+update_attributes(file_path: str, kwargs: dict)
+apply_water_background(peak_image_array: np.ndarray) : : np.ndarray
+heatmap(peak_image_array: np.ndarray, min_distance: int) : : np.ndarray
+heatmap_tensor(peak_image_array: np.ndarray, min_distance: int) : : torch.Tensor
+confirm_value(value: float, value_name: str) : : bool
+confirm_action(action_discription: str) : : bool

+process_directory()

+process_single_dataset(dataset: str, clen: float, photon_energy: int)
+cleanup()

+cleanup_authenticator()

+process_empty(percent_empty: float)
+process_empty_single_dataset(dataset: str, percent_empty: float)

Figure 8: process.py UML diagram

With adequate training and testing in mind, the incorporation of "empty” im-
ages are necessary into the datasets. This is easily done by adding an argument that
takes some input percent, say 50% of the data in images/peaks, (say 50 images
from the original 100) then adds that number of image back into the directories
(to get 150). images/peaks and images/labels both will receive simply 0 matri-
ces, images/peak water_overlay will receive the water-background image of the
respective dataset. Since we will be testing with the overlay images, its important
for peak detection to distinguish between images with Bragg peaks, and without.

As mentioned the Processor class in process. py, works with process_directory.py.
In addition to generating new overlay images, and "empty” images, we also incor-
porate a validation check. This check ensures all the images have correct attributes
assigned to them. This involves; the presence of Bragg peaks, the camera length,
and photon energy. We prompt the user to select the datasets to be used for train-
ing and testing, in the select _datasets function. This simply calls every dataset
across the directories in images/ and gets an updated number of images in each
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directory, and then calls the get_counts function to count every selected directory.
All of these steps in the script ensures homogeneous data to be used in training and

testing.

PathManager

-current_path: str

-root: str

-datasets: List[int]
-images_dir: str

-peaks_dir: str

-labels_dir: str
-peaks_water_overlay_dir: str
-water_background_dir: str
-temp: str

-total_paths: namedtuple

+__init__(datasets: List[int], root_dir: str)
+selected_datasets()

+init_lists(dataset: str) : : list
+fetch_paths_by_type(dataset: str, dir_type: str) : : list
+refresh_all() : : tuple

+re_root(current_path: str) : : str
+get_path(path_name: str) : : str
+get_peak_image_paths(dataset: str) : : list
+get_peaks_water_overlay_image_paths(dataset: str) : : list
+get_label_images_paths(dataset: str) : : list
+get_water_background(dataset: str) : : str
+update_path(file_path: str, dir_type: str)
+remove_path(file_path: str, dir_type: str)

Figure 9: path.py UML diagram

The next step, is the load this into the PyTorch Datal.oader. This functional-
ity is incorporated in the class DataManager in data.py. This does the standard
Datal.oader instantiation from torch.utils.datasets, where the file paths from
PathManager (therefore images/) are parsed according to their peak, overlay, and
labels images. A partition of the data occurs where 80% is used for training, and
20% used for testing.
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DatasetManager

-paths: object

-datasets: List[int]
-parameters: Dict
-total_paths: namedtuple
-peak_paths: List[str]
-water_peak_paths: List[str]
-label_paths: List[str]
-water_background: List[str]
-transform: Any

+__init__(paths, datasets: List[int], transform: Any)
+setup_datasets()

+_len_()::int

+__getitem__(idx: int) : : Tuple
+authenticate_attributes() : : None
+count_empty_images() : : float

Figure 10: data.py UML diagram
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2.3 Model Architectures

As mention earlier, there are three parameters that we are looking to identify in each
diffraction image, are Bragg peaks present, what is the incident photon energy, and
what is the camera length. This can be defined as three-classification problem. In
addition, we want to be able to locate were Bragg peaks are in a diffraction image.
Instead of building one large model that the give an output probability for every
combination of the key parameters, three models are used for classification. This
approach was agreed to be the best for further development, as these models are
only functioning as initial test for classification with simulated data. We will later
want to classify photon energy and camera length values more precisely and add
models to find different parameters. Due to the nature of having multiple models,
we implement a model pipeline for images to pass through to gather information.
This will be elaborated on in the latter half of this section.

Each of these attributes we are classifying require different models, labels, op-
timizers, learning rates, loss functions, and other important parameters. To help
keep concise and modular code we created classes in our eval.py file for each at-
tribute to take advantage of Pythons object oriented capabilities. This helped the
code greatly by only needing to instantiate an attribute we want to classify and
pass the object around to relevant code like the training loop, evaluation, and the
model pipeline.
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Peak Detection_Configuration Photon_Energy_Configuration Camera_Length_Configureation Peak Finder_Configuration
-paths: object -paths: object -paths: object -paths: object
-datasets: list -datasets: list ~datasets: list -datasets list
~device: str ~device: str ~device: str ~device: str
-save_path: str -save_path: str -save_path: str -save_path: str
-model: nn.Module -model: nn.Module -model: nn.Module -model: nn.Module
feature: str feature: str feature: str feature: str
~classes: int ~classes: int ~classes: int ~classes: int
-labels: ist -Iabels: list -labels: list Iabels: list
-attribute_mapping: dict -attribute_mapping: dict -attribute_mapping: dict -attribute_mapping: dict
threshold: float -threshold: float ~threshold: float -threshold: float
-learning_rate: float -learning_rate: float -learning rate: float -learning rate: float
-weights: torch.Tensor -weights: torch.Tensor -weights: torch.Tensor -weights: torch.Tensor
~criterion: nn.Module ~criterion: nn.Module ~criterion: nn.Module ~criterion: nn.Module
-epochs: int -epochs: int -epochs:int -epochs: int
-optim: optim.Optimizer -optim: optim.Optimizer ~optim: optim.Optimizer -optim: optim.Optimizer
A A A
A /
\ Get_Configuration Details
. ~threshold: float
N -_formatted_image_attribute: torch.Tensor P
-_formatted_prediction: torch.Tensor //

| +get_model() : : nn.Module
+get_criterion() : : nn.Module
+get_feature(): : str
+get_classes():  int
+get_labels(): : list
+format_image_attributes(image_attribute: torch.Tensor)
+format_prediction(score: torch.Tensor)
+get_formatted_image_attribute() : : torch.Tensor
+get_formatted_prediction(): : torch.Tensor
+get_learning rate(): : float
+get_loss_weights(): : torch.Tensor
+get_save_path() : : str
+get_model_diagram(filename: str, file_path: str, device)
+get_epochs():  int
+get_threshold(): : float
+set_threshold(threshold: float)
+get_optimizer(): : optim

Figure 11: eval.py UML diagram

The first model, as seen in Figure [12]is the first in the pipeline. This being a
CNN designed for binary classification; this being peak detection. However, this
was by far the most difficult model to get adequate results from due to the low
flux nature of the CXLS data. The Bragg peak detection was a very difficult due
the closeness in value of the signal and noise. This is why the novel approach we
introduce is necessary. Figure (12| highlights the two convolutional layers optimized
for extracting varying scales of features from images. The first convolutional layer
uses a larger 10 x 10 kernel to capture broad features, followed by a smaller 3 x 3
kernel in the second layer for finer details. Each convolutional layer incorporates
group normalization with four groups to ensure stable and efficient training by nor-
malizing group activations. After the initial convolutional layer, a max pooling step
reduces the spatial dimensions by half, which decreases the computational load and
helps mitigate overfitting. The network utilizes the ReLU activation function after
each group normalization to introduce non-linearity, enhancing the model’s ability
to learn intricate patterns. The output from the convolutional layers is dynamically
computed to ensure accurate dimensionality for flattening before it reaches the fully
connected layer. This layer is crucial as it integrates all the learned features to make
the final classification decision. The model’s dynamic architecture, including calcu-
lated output dimensions and the subsequent flattening of these dimensions, enables
efficient processing and robust performance in classifying complex image data.
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For binary classification peak detection, It was found that implementing a learn-
ing rate scheduler helped the problem converge on a solution faster. The scheduler
used is ReduceLROnPlateau. The parameters we used where reducing the learning
rate by a factor of 10 every 3 epochs there was not a change in the learning rate at
a threshold of 0.1. It was also found that using weights was beneficial to the peak
detection problem. This is likely because we are generating empty images based of
a percent of the simulated data. Therefore, weights would be helpful due to the
imbalanced nature of the dataset. The weight used for binary classification was
calculated by dividing the total number of empty images by the number of peak
overlay images, giving a weight of about 0.4. The loss function used for binary
classification was BCEWithLogits which combines the sigmoid activation function
with binary cross entropy. This loss function is very numerically stable and com-
putationally effective. The optimizer used for binary classification is Adam. This
optimizer is computationally expensive compared to other optimizers, like stochas-
tic gradient descent, but outcome from using Adam was always superior and thus
warranted incorporation.

conve. weight comvz.bias
16, 8, 3, 3) (16)
LateGrad

HaxPooleDUivhIndicesBackvarad | [ Accwmlacecrad | [ acoum.

| gnz.weight gn2.hias
(16) 116y
acemmlareGrad | [ decumilateGrad |

Figure 12: Peak binary classification model made by torchviz.

To increase the complexity of the binary classification problem in a realistic way,
we used data were the beam size was not optimized to the sample protein, causing
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many of the photons to miss the target, lowering the flux even more. Interestingly,
we got the best results not by adding more layers to increase complexity, but by
using the next model, dual input CNN, where it would train with both overlay
images and signal images.

The next model, seen in Figure uses two separate but identical branches.
Each branch consists of a convolutional layer with a 5 x 5 kernel, a stride of 2, and
padding of 1, followed by a ReLLU activation and a max pooling layer. This design
helps in extracting and reducing feature dimensions effectively for both overlay and
respective peak images. Output dimensions from both branches are calculated dy-
namically to ensure consistency before the features are flattened and concatenated.
This combined feature set is then fed into a classifier that includes a linear layer
with 128 units, a ReLLU activation, and a final linear layer that outputs a single de-
cision value. Like for the normal flux classification, we used BCEwithLogits, Adam,
and ReduceLROnPlateau.

Figure 13: Model of dual input CNN.

The photon energy and camera length are both multi-class classification prob-
lems with three output classes for each. The camera length and photon energy
effect the overlay and peak images so much that this is a problem that could be
addressed with just a linear model. We used stochastic gradient descent (SGD) for
these models because they would produce the same results with less computational
cost than Adam, and there was no need for a learning rate scheduler. For the loss
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function, we used cross entropy loss.

The state dictionaries for the models for peak detection (normal flux), photon en-
ergy classification, and camera length classification were saved after training. These
saved parameters would then be used in the model pipeline. This pipeline is created
by instantiating the pipeline class from pipe.py and passing in the attribute objects
and file paths to the saved parameters. We then would use the run function, which
takes in an image tensor, and send it through the binary classifier. If peaks were
detected, then the image would then be passed to the other multi-class classifiers,
for the prediction of camera length and photon energy. At the end of this pipeline,
the output value would either be false, ending in termination after peak detection,
or return true with the camera length and photon energy predictions. This serves
as a prototype for what the final product will act like when being used for the CXLS.

ModelPipeline

-peak_conf: nn.Module

-energy_conf: nn.Module

-clen_conf: nn.Module

-peak_model: nn.Module

-energy_model: nn.Module

-clen_model: nn.Module

-water_background_subtraction: background.BackgroundSubtraction
-pipeline_results: dict

-attributes: tuple

+run(image: torch.tensor) : : tuple

Figure 14: pipe.py UML diagram

The last model we worked on was a model for finding peak locations. This model
is by far the most complex model, seen in Figure This model is mentioned after
the pipeline because it is not to a satisfactory level yet, and therefore excluded from
the pipeline.

This model is a convolutional neural network designed to generate heatmaps
from image inputs. It starts with an initial convolutional layer that expands the
input to 16 channels, followed by batch normalization and a max pooling layer to
reduce dimensionality. A second convolutional layer increases the channel depth to
32, followed by another batch normalization. The network then incorporates ad-
vanced attention mechanisms to refine the feature maps; ChannelAttention, which
focuses on important features across the channel dimension by processing average
and max pooled signals through separate fully connected layers, and Spatial Atten-
tion, which focuses on critical spatial information by processing the maximum and
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average projections of the feature maps.

These attention mechanisms enhance the network’s ability to focus on relevant
features, both channel-wise and spatially, allowing for more precise heatmap gener-
ation. After processing through these attention modules, the feature map is passed
through another convolutional layer specifically designed to produce the heatmap
output. Finally, the heatmap is upscaled to the original input size using bilinear

interpolation and a dropout layer is applied to prevent overfitting.

convz. ueight conva bias
(32, 16, 3, 3) (32)
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Figure 15: Current status of the peak finder model.
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3 Results

The results for both photon energy and camera length classification resulted in a
model that could perfectly classify the images. Each model produced a confusion
matrix of diagonal ones. As well, by the end of the fifth epoch on each model the
train and test accuracy was one and the train and test loss was zero. We can even
see in Figure that if we change the data sets being used in training that the
model will appropriately respond.

CM for photon_energy Linear 1.0
0 1 2
| I
08 Loss and Accuracy for photon_energy with Linear
: 3.01 —8— accuracy train
accuracy test
—— loss train
251 -®- loss test
— 0.6
E
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Figure 16: Results from training the linear model for classifying photon energy.
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Figure 17: Results from training the linear model for classifying camera length.
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Figure 18: This is an example of selecting specific data sets, here 01 and 02, and
seeing that the model properly classifies the data.

Below is the training for the normal flux binary classification, which was almost
perfect. With 30 epochs, the final confusion matrix came out to be,

1 0
0.025 0.975

CM for peak Binary _Clas
0

sification 1.0
1

Loss and Accuracy for peak with Binary_Classification

—e— accuracy train
/
4000 =

accuracy test
e \ —e— loss train
_ 0.6 l,I .l‘ -@- loss test
[0 ! ]
2 L S
- N VI \
v 8 M \
=4 ] é ®
= r 0.4 & 2000 4 1
i n
" 1
e 1
\
\
H
1000 1
1
Loz ! B
& I\
o
o] $Tteeeelie it s BLIEIEIES
Predicted Label T T T - - -
o 5 10
- 0.0

Figure 19: Results from training binary model for classifying normal flux photon
peaks.

Below is the comparison base CNN used to justify a more complex architecture.
The base CNN is composed of a convolutional layer, the ReLu activation function,
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and a fully connected layer. Over the same number of epochs, the outcome confusion
matrix was

1 0
0.26 0.74

The improvement on peak detection here is critical, as misidentifying 26% of

peak data would be detrimental in data analysis. Thus warranting the basic CNN
as not suited for our purposes.
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Figure 20: This is the base binary classification model used to comparison made by
torchviz.
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Figure 21: Base comparison model for binary classification.
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Using the train models, we loaded that state_dict of the models from their
respective pt files into the ModelPipeline class. We passed in diffraction images
into the run method and it classified the image. Below in Figure 22| are examples
of classification of images with and without Bragg peaks.

-- attributes: { tensor([0.2500], dtype=torch.float64), 'pea ensor([True]), 'photon_energy': tensor([8000], dtype=torch.int32)}

esults: {'clen’: tensor([0.2500], dev. cuda:@'), 'photon_energy': tensor([8000], devic cuda

00], dtype=torch.float64), ‘peak’: tensor([False]), _energy': tensor([6000], dtype=torch.int32)}
-- results: None

Figure 22: Example pipeline results.

Below are the results from the extreme low flux from the beam misalignment.
These parameters caused classification to be very difficult for the model, producing
a confusion matrix of

0.25 0.75
0 1

While the loss and accuracy plot do not show this, the loss and accuracy would
plateau for up to 30 epochs, when with the use of a learning rate scheduler. Despite
being difficult to classify, this is the only model that would not result in complete
classification of either "peaks” or "no peaks” (columns in the confusion matrix).
Even the model used for normal flux peak detection was producing poor results
with this data set in Figure [23]
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Figure 23: Results from training dual channel model for classifying extreme low
flux photon peaks.
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In Figure [24] is the results from the peak finder model. The loss and accuracy
graph is deceiving in this situation. Since our diffraction images have over 4 million
pixels (roughly 2000 x 2000), and there is about 1 peak pixel per 100,000 noisy pix-
els, the low loss and high accuracy does not accurately give a good representation
of how to model doing in reality. The confusion matrix does however show that the
model is over fitting to give that there are never Bragg peaks.
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Figure 24: Results from training peak finder model.

4 Discussion

The multi-class classification problems with our parameters ended up being much
simpler to classify that previously imaged. We started working with CNNs for this
classification and realized that all that was needed was a linear model. This is
likely the case because of the values and amount of chosen photon energies and
camera lengths to work with. If we had a larger spectrum of photon energies and
camera lengths it would likely be much more difficult to classify. The next step in
expanding the capabilities of this model now that we know this is an easy task is
to generate more data categories, which was too time consuming to reasonably do
within the time frame of this project. Ideally we would be able to classify to the
nearest keV photon energy and nearest cm camera length.

The binary classification with normal flux was difficult to accomplish because it
was mostly in tuning parameters. Creating models with more layers would still only
result in less than 75% of correctly identified peak images. We found after creating
multiple models and playing with the parameters that the model we choose gave
the best results for the lest computational cost. The accuracy seems to plateau at
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around 95% accuracy for detecting peaks, even with more epochs. This may come
down to fine tuning the model even more.

Binary classification for extreme-low flux was incredibly difficult to figure out.
Even using methods like transfer learning with models architectures like ResNet50
could not produce results as good as the dual channel input. We also attempted
single channel input with both peak and overlay images for training, and testing
with only overlay, however this lead to poor results as well. Of course the glaring
issue with this implementation would be using this model in a practical sense, due
to a channel requiring the need of a signal image. This will need to be explored
more because while the lab does not expect to see images this low flux commonly,
it would be better if our model could handle a variety of photon fluxes.

The peak detection model was severely over fitting the data to always give the
results that there is no Bragg peaks. Even when incorporating a high weight of
100,000 for the loss function, and using a high dropout rate of 0.9, the model even-
tually starts to guess all zeros over enough epochs. The model also seems to never
get any peak identification location correct. We were able to monitor this by watch-
ing a printout of the known and guessed peaks. The model seems to learn before 10
epochs that there are only around 10 to 100 peaks present in the image, and it also
seems to start to group the guessed peaks in the correct areas. However, it never
actually guesses a peak correctly, it over fits before that can happen. We have also
played with using a DnCNN (denoising convolutional neural network), however the
results of this model did not seem to work as well. This will be the main focus of
this project after this class ends. Being able to local the peaks is long term the
heart of this project, and will likely be the first thing we tackle during the summer
at CXFEL Labs.

In this project data simulation and management was a bottleneck. It was a slow
start to get software running for data simulation, and it was a long stretch to get
all the correct data we needed. We spent quite some time working with incorrect
data until we were able to clear the issues with our P.I. at CXFEL Labs, which
lead to us experimenting with the extreme low flux data, since it was already gen-
erated. Though this low flux data was not meant to be used at this point, it lead
to interesting results for a real issue that was not originally part of this project,
but worth mentioning in the report. Issues with file management code would stop
the ability to test models for days at a time while troubleshooting. Now that these
prospects are in order, we are currently simulating thousands of images to use to
use with training, and the file management code is incredibly robust and easy to
troubleshoot.
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In conclusion, this project has significantly advanced the understanding and ap-
plication of deep learning techniques in the analysis of X-ray crystallography data for
the CXLS at ASU. By successfully integrating CNNs, we have enhanced the accu-
racy and efficiency of peak detection and the prediction of experimental parameters,
demonstrating the potential of advanced computational methods in overcoming the
inherent challenges posed by low flux and high noise levels in diffraction data. This
research not only serves as a foundational study in applying neural networks to
crystallography at CXLS but also sets the stage for future work to expand these
techniques to include more complex experimental setups and broader applications
in scientific research. Moving forward, it is anticipated that continued refinement
of these models and expansion of the data set will yield even more robust tools,
capable of transforming the landscape of crystallographic research by significantly
reducing the time and resources needed for data analysis.
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